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We report about a mechanism for surface localization, present in finite defect-free polyatomic lattices
described by a tight-binding model. Numerical diagonalization and degenerated perturbation theory show that
there is a minimum number of atoms within each unit cell in the lattice for which surface states may exist,
provided the local energy of the surface atom is different from the rest in the unit cell. It is shown that the
appearance of surface states is a second-order effect in the hopping parameter. Other kinds of surface states are
identified in the two-dimensional case.
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I. INTRODUCTION

In finite periodic lattices, the break of translational sym-
metry may lead to the formation of so-called surface states,
characterized by having wave functions which decay expo-
nentially with the distance to the surface. This was pointed
out by Tamm in his seminal work,1 where he considered the
motion of an electron in a one-dimensional semi-infinite lat-
tice with a defect at the surface �end atom�. Further studies of
electronic surface states have allowed to classify them into
two groups: Tamm states and the so-called Shockley states.
Tamm states exist in narrow-band �tight-binding �TB�� solids
as a consequence of the presence of a surface defect1–4

whereas Shockley states may exist in defect-free broadband
solids as a consequence of the crossing of energy bands.5,6 In
both cases, the energy of surface states lie in the band energy
gaps. There are systems, where by varying model parameters
such as the surface perturbation strength and hopping are
possible to find regions of existence �and even coexistence�
of Tamm and Shockley states.7,8 Surface states also have
received much attention in the field of photonics, where the
analogy between electronic transport in solids and light
propagation in optical periodic media became clear.9 It was
shown that Tamm-type surface modes may exist in the inter-
face separating periodic and homogeneous optical media,10,11

where the presence of a defect at the interface determined
their existence.

For many years it was thought that Tamm-type states are
only possible if the lattice has a surface defect. Recently,
advances in photonics have opened possibilities to excite
Tamm-type states in defect-free lattices. For instance, it may
be done by having a nonlinear optical medium12–14 or by
periodic modulations of the lattice potential along the light
propagation axis.15 In both ways, under certain conditions on
the power and wavelength of the incoming light beam, “ef-
fective” defects are created at the surface, which keep light
localized.

In this Brief Report we report about a very simple way to
have Tamm-type surface states in periodic defect-free lat-
tices. One of the requirements is that the lattice must be
polyatomic. It is shown that there is a lower bound for the
number of atoms per unit cell �basis� for having surface
states, which is three for nearest-neighbor hopping between
atoms, where the local energy of the surface atom must be
different from the rest in the unit cell. This condition holds
even for the simplest case of a binary lattice. In this case

surface states exist when two atoms of one specie are sepa-
rated by, at least, two atoms of the other specie �Figs. 1�c�
and 1�d��.

By using degenerate perturbation theory, it is shown that
the appearance of surface states is a second-order effect in
the hopping parameter. The local energies of the surface at-
oms receive different energy shifts in comparison to the at-
oms of the same specie in the bulk. Thus, they leave the
corresponding energy band as hopping increases. If the basis
consists of two atoms �e.g., Figs. 1�a� and 1�b��, then hybrid-
ization of local states happens at second order in the hopping
parameter, and the effect is not observed. If the basis con-
tains more than two atoms �Figs. 1�c� and 1�d��, hybridiza-
tion happens at higher order. Thus, the effect is observable.
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FIG. 1. �Color online� Time evolution of the density ��n�2 in ��a�
and �b�� the ABA chain and ��c� and �d�� the ABBA chain. Both
chains have L=10 A atoms. In each case the unit cell is shown on
the left. Black and white colors correspond to maximum and mini-
mum values of the density, respectively. In �a� N=28 and the initial
condition was �n=�n,9. In �c� N=19 and the initial condition was
�n=�n,13. In �b� and �d� the initial condition was �n=�n,1. In both
chains all the hoppings are equal to t. The on-site energies are �A

=−5t and �B=0, and time is in units of �t−1.
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This rather simple mechanism for the existence of surface
states, which was hidden during almost 80 years since
Tamm’s contribution, allows for practical implementations in
photonic crystals, arrays of optical waveguides, and semi-
conductor superlattices, among probably many other possi-
bilities.

We model a periodic chain of N atoms with a TB Hamil-
tonian

Ĥ = �
n=1

N

�n�n��n� − �
n=1

N−1

tn,n+1��n��n + 1� + c.c.� . �1�

In Figs. 2�a� and 2�b� we show the energy spectra of two
periodic lattices, obtained by numerical diagonalization of
Eq. �1� in the atomic basis 	�n�
. In both cases we have a
binary array, where there are only two atom species A and B
with local energies �A=−2 and �B=0 �in arbitrary units�. L is
the number of A atoms, tn,n+1= t, and �1=�A.

In the case shown in Fig. 2�a�, the unit cell contains
two atoms �ABA chain, see Fig. 1 left�. The spectrum
consists of two energy bands. The lower and higher en-
ergy band is formed by states having larger probability den-
sity on the odd �A atoms� and even �B atoms� sites, respec-
tively. The �red� dashed lines mark the band edges of the
spectrum for the corresponding infinite chain, E�= ��A

+�B����A−�B�2+16t2 cos2�ka /2�� /2, where k and a are the
Bloch wave number and lattice constant, respectively. We
see that there is no energy-level splitting off from any of the
bands and thus no surface state. The existence of surface
states was also tested by computing the time evolution of
excitations initially localized in the bulk �Fig. 1�a�� and at the
surface �Fig. 1�b�� of the chain, where in both cases after a
short time the wave packet spreads over the chain.

In the case shown in Fig. 2�b�, the unit cell contains three
atoms �ABBA chain, see Fig. 1 left�. The spectrum consists

of three energy bands, where the lowest-energy band again is
formed by states having larger probability density on the A
atoms and the other two by states having larger probability
density on the B atoms. We may see that indeed two levels
split off from the lowest-energy band.16 They are the surface
states, characterized by an exponential decay of the probabil-
ity amplitude with the distance to the surface �A� atoms on
the left and right ends of the chain �Fig. 2�c��. An excitation
initially localized in the bulk of the chain will spread quickly
�Fig. 1�c��, whereas an excitation initially localized in the
surface �Fig. 1�d�� overlaps strongly with the surface states
and stays localized at the surface atom for very long times.
Note also that since the surface states separate from the rest
of the eigenstates of the band, they are very weakly coupled
to the latter. Thus when exciting states in the bulk, the wave
packet spreads over the chain but it does not reach the sur-
face �Fig. 1�c��, in contrast to the case where there are no
surface states �Fig. 1�a��.

The existence of surface states in finite lattices may be
intuitively explained as follows: the local energy at one lat-
tice site is renormalized due to the coupling to the rest of the
lattice. Since the surface atoms have different coordination
number �number of atoms directly connected to them� than
the atoms in the bulk, the renormalization is different for the
former, effectively being impurities which lead to localiza-
tion at the surface.

II. ANALYSIS BY DEGENERATE PERTURBATION
THEORY

To give a description for the existence of surface states in
periodic polyatomic lattices, we use degenerate perturbation
theory. Let us consider a periodic chain with N atoms �sites�,
from which L of them �including the surface atoms� have
local �on-site� energy �1. The primitive cell of the chain has
b�1 atoms with on-site energies �r �r=1, . . . ,b�, and hop-
ping amplitudes tr= t�r, with t1= t and �r= tr / t1 �Fig. 3�a��.
Thus N= �L−1�b+1.

The tight-binding Hamiltonian of the chain may be writ-

ten as Ĥ= Ĥ0+ tV̂, where the unperturbed Hamiltonian is
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FIG. 2. �Color online� ��a� and �b�� energy spectrum E	 of the
TB chain as a function of the hopping parameter t �in arbitrary
units�. In �a� the chain has two atoms per unit cell �ABA chain�,
where N=19 �L=10�, �A=−2, and �B=0. In �b� the chain has three
atoms per unit cell �ABBA chain�, where N=28 �L=10�. The red
dashed lines mark the band edges of the corresponding infinite
chains. �c� Spatial profile of the probability density of three eigen-
states of the ABBA chain belonging to the lowest-energy band �see
�b��. Here t=1.
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FIG. 3. �a� Sketch of the atomic chain with b atom species and
hoppings in primitive cell. The sites with on-site energy �1 are
represented by filled circles to distinguish the unit cells. �b� Ex-
ample of a two-dimensional binary lattice with on-site energies �A

and �B.
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Ĥ0 = �
r=1

b

�
m=1

M

�r�lm,r��lm,r� + �1�lM+1,1��lM+1,1� , �2�

where M =L−1 and lm,r=b�m−1�+r. The last term accounts
for the Nth site of the chain with on-site energy �1. The
hopping �perturbation� operator is

V̂ = − �
r=1

b

�
m=1

M

�r��lm,r��lm,r + 1� + c.c.� . �3�

At t=0, the eigenstates of the system are the localized basis
states 	�lm,r�
. We are interested in the continuation of the
states �lm,1� for t�0 since they include the surface basis
states �1� and �N�. We assume that �r�1��1. Therefore, the
states of interest are �M +1�=L-fold degenerated. The zeroth-
order wave function is written as

��lm,1

�0� � = �
m�=1

M+1

Cm�,m�lm�,1� . �4�

The first nonzero correction to the eigenenergy comes in sec-
ond order in the hopping parameter t and it is obtained from
the equation

�lm�,1�V̂��lm,1

�1� � = Elm,1

�2� Cm�,m, �5�

where m ,m�=1, . . . ,M +1 and ��lm,1

�1� � is the first-order cor-
rection to the wave function. The left-hand side of Eq. �5� is
equal to

− �
m�=2

M+1
�b

2

�b − �1
Cm�,m�m�,m�,

− �
m�=1

M
�1

2

�2 − �1
Cm�,m�m�,m�,

− �
m�=2

M+1
�b�b−1

�b − �1
Cm�,m�m�+2/b,m�,

− �
m�=1

M
�1�2

�2 − �1
Cm�,m�m�−2/b,m�. �6�

Thus, Eq. �5� is equivalent to the eigenvalue equation HCm
=Elm,1

�2� Cm, where Cm= �C1,m ,C2,m , . . . ,CM+1,m�t. The diagonal
elements of the �M +1�
 �M +1� matrix H are

Hm�,m� =�
−

�1
2

�2 − �1
if m� = 1,

−  �b
2

�b − �1
+

�1
2

�2 − �1
� if 2 � m� � M ,

−
�b

2

�b − �1
if m� = M + 1.

�
�7�

The only off-diagonal elements that may have nonzero val-
ues are

Hm�,m�−2/b =
�1�2

�2 − �1
,

Hm�,m�+2/b =
�b�b−1

�b − �1
. �8�

From Eqs. �7� and �8� we see that if b�2, the off-diagonal
matrix elements vanish and the second-order correction to
the energy is given by Eq. �7�. Thus, at second order in the
hopping parameter, the degeneracy is not completely lifted.
The two eigenvalues E1

�2�=H1,1 and EN
�2�=HM+1,M+1 corre-

spond to the surface states, which split off from the remain-
ing degenerated levels which are not surface states. Up to
second order, the eigenenergies are for m=1 and m=M +1
=L,

E1 � �1 −
�1

2

�2 − �1
t2, �9�

EN � �1 −
�b

2

�b − �1
t2. �10�

For m�1,M +1,

Eb�m−1�+1 � �1 −  �b
2

�b − �1
+

�1
2

�2 − �1
�t2. �11�

The degeneracy of the remaining nonsurface levels �Eq. �11��
will be lifted at higher order O�tb� and will form a band of
bulk states. If b=2, then there are nonzero off-diagonal ma-
trix elements Hm�,m��1. Thus, at second order the degeneracy
is lifted and we have a band of energy levels, and no surface
states split off from the band. Finally, we see from Eq. �9�
that the existence of surface states is subject to the condition
�r�1��1, no matter whether the on-site energies �r�1 are
equal or not; and that the surface states are not degenerated if
�b��2 or �b��1.

In Fig. 4 we show the energy spectrum of the ABBA chain
around the lowest-energy band, obtained by numerical diago-
nalization of Hamiltonian �1� with �A=−2 and �B=0 �thin
solid lines�, where we see the splitting off of the surface
states from the upper band edge. Up to second order in the
hopping parameter, degenerated perturbation theory �thick
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FIG. 4. �Color online� Energy spectrum vs the squared hopping
parameter around the lowest-energy band �in arbitrary units�, ob-
tained by numerical diagonalization for the ABBA chain �b=3� with
N=28, �A=−2, and �B=0 �see Fig. 2�b��. The surface states split off
from the rest. The thick dashed and dotted lines are the results from
Eqs. �9�–�11� with �1��A, �2,b��B, and �r=1 �r=1,2 ,3�.
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dashed and dotted lines� nicely describes the appearance of
the surface states. These results are similar to those obtained
by Pinto et al.17 for a many-particle model, where by using
perturbative arguments the system was reduced to an effec-
tive model describing one particle in a polyatomic lattice
with a particular structure in the primitive cell.

III. SURFACE STATES IN TWO DIMENSIONS

Having demonstrated the existence of surface states in
finite one-dimensional lattices, the extension to the two-
dimensional case is straightforward, where a similar analysis
using degenerate perturbation theory may be carried out. For
the sake of simplicity, we again considered a binary array
�only two on-site energies� and equal hopping parameters
�Fig. 3�b��, where the impurity atoms with on-site energy �A
are separated by b atoms with on-site energy �B along the
horizontal and vertical directions. The result is that again
surface states may exist if b�2 and that there are two groups
of surface states: one group is corner states, which are local-
ized at the corners of the lattice. Up to second order in the
hopping parameter, they are fourfold degenerated, with
eigenenergy Ecorner��A−2t2 / ��B−�A�. The other group is
edge states, which are localized along the edges �excluding
the corners� of the lattice. They are 4�L−2�-fold degener-
ated, with eigenvalue Eedge��A−3t2 / ��B−�A�. The other
eigenstates are �L−2�2-fold degenerated bulk states with
eigenenergy Ebulk��A−4t2 / ��B−�A�, which will hybridize at
order O�tb�. The above-described two groups of surface

states obtained by perturbation theory are consistent with
expectation from renormalization arguments since the coor-
dination number of the atoms along the edges is different
from the atoms in the bulk; and in turn the coordination
number of the corner atoms is different from the one for
atoms along the edges.

In summary, we reported the existence of single-particle
surface states in finite defect-free polyatomic lattices. We
have shown that there is a minimum number of atoms per
unit cell �basis� for which such surface states may exist,
which is three in the one-dimensional case. This number
gives the minimum basis along each direction in the two-
dimensional case, where two kinds of surface states were
identified. We expect similar results in the three-dimensional
case. The lower bound in the basis is because the appearance
of surface states is a second-order effect in the hopping pa-
rameter, a fact which had remained hidden for long-time
since Tamm’s contribution. The rather simple conditions for
the existence of surface states described here allows for prac-
tical implementations. Although we presented results for the
electronic case, we expect that they hold in the optical case
as well, where surface localization is nowadays object of
intensive research.
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